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ABSTRACT 
 

The difficulty of predicting stable crystal structures based on the knowledge of only the chemical composition 

has long puzzled the scientists and has been a stumbling block on the way to fully computational materials 

design. Many physical properties of the materials are predicated on the awareness of the interionic forces that bind 

the atoms together. Possibly, the principles of atomic bonding are the best illustrated by considering the 

interactions between two isolated atoms as they are brought into close proximity from an infinite separation. These 

differences cause difference in their mechanical, electrical and magnetic properties. It is due to the influence of 

these inter-atomic forces that the constituent particles of a crystal attain the positions corresponding to a 

minimum energy configuration and thus get bonded together. Present paper made elaborated study on the many 

body interactions in general and three body interaction in particular. 
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I. INTRODUCTION 

 

There exit inter-atomic, inter-molecular or inter-

ionic forces, which bind the atoms or constituent 

particles together in a crystalline solid. A solid 

material whose constituent atoms, molecules, or 

ions are arranged in an orderly repeating pattern 

extending in all three spatial dimensions is known as 

a crystalline solid. The unit cell is given by its lattice 

parameters, the length of the cell edges and the 

angles between them, while the positions of the 

atoms inside, the unit cell are described by the set of 

atomic positions (Xi, yi ,zi) measured from a lattice 

point. These binding forces in most cases are 

electrostatic in nature, but the distributions of 

electrons around the various particles are 

quantitatively different in different crystals. As 

compared to the other states of matter, the atoms or 

molecules are closely packed together by strong 

mutual forces of attraction in solids. The 

rearrangement of electrons takes place when atoms 

unite to form the molecules. The reason for this  lies in 

the fact that when the ions are put in a lattice their 

electron wave-functions overlap and get deformed: 

These effects lead to the non- orthogonality of the one-

electron wave-functions. According to quantum-

mechanical theory using Heitler London 

approximation [36], the atomic wave-functions-are 

treated rigidly connected with their nuclei and supposed 

not to change in a deformation of the lattices. Which 

depends on the inert nuclear separation and interacts 

with all other charges via Coulomb force law and gives 

rise to long range TBI introduced by Lowdin [14] and 

Lundqvist [15]. 
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Figure 1.1 Major types of universal interactions prior to 

the development of x-ray diffraction crystallography; the 

study of crystals was based on the geometry of the 

crystals 

The electroweak interactions are entirely responsible 

for the cohesion of solids. The other fundamental 

interactions seem to have limited significance in the 

engineering of crystal structure. The gravitational 

interaction becomes negligible due to very low 

masses of the atomic entities while strong interactions 

are restricted within nuclear range. Similarly, the 

magnetic interactions have only weak effect on the 

cohesion. Therefore, the major contributors for the 

cohesion of solid are the following electroweak 

interactions: 

1. Electrostatic Coulomb Interaction Potential 

2. Many Body Interaction (MBI) Potential  

(A) Quantum Theory of Three Body Interaction (TBI) 

(B) Classical Theory of Three Body Interaction (TBI) 

3. van der Waals Interaction (vdW) 

4. Short Range (SR) Overlap Repulsive Interaction 

Many Body Interaction (MBI) Potential ΦT(R): 

The many-body interaction  is a general name for a 

vast category of physical problems pertaining to the 

properties of microscopic systems made of a large 

number of interacting particles. Microscopic here 

implies that quantum mechanics has to be used to 

provide an accurate description of the system. A large 

number can be anywhere from 3 to infinity (in the case 

of a practically infinite, homogeneous or periodic system, 

such as a crystal), although three- and four-body systems 

can be treated by specific means (respectively 

the Faddeev and Faddeev-Yakubovsky equations) and 

are thus sometimes separately classified as few-body 

systems. In such a quantum system, the 

repeated interactions between particles create quantum 

correlations, or entanglement. As a consequence, 

the wave function of the system is a complicated object 

holding a large amount of information, which usually 

makes exact or analytical calculations impractical or 

even impossible. Thus, many-body theoretical physics 

most often relies on a set of approximations specific to 

the problem at hand, and ranks among the 

most computationally intensive fields of science. 

These transferred charges, in turn, interact via their 

associated Coulomb field with a l l  other charges of the 

lattice and give rise to the long-range MBI [14-15] 

whose most significant component is the TBI. The 

existence of these TBI has been defined both by 

classical as well as quantum concepts, by Lowdin [14]
 

and Lundqvist [15]. Extensive studies, carried out by 

Verma and Singh [16-17] and their co-workers have 

shown that these interactions have significant 

influence on lattice mechanical properties of ionic 

solids. It is well known that the ions during lattice 

vibrations surfer an appreciable amount of overlap and 

consequently their electron shells undergo deformation. 

This mechanism causes a transfer of charge between the 

overlapping adjacent ions. Later Singh and Jog et al. in 

his thesis [43] and co-workers have exploited this 

model for the prediction of high pressure phase 

transitions in pure [18-20] and mixed ChSCs. A brief 

account of the quantum and classical theory of TBI is 

given below. 

Quantum Theory of Three body Interaction (TBI) 

This orthogonality causes the charge distribution to 

differ from the sum of the densities for free ions, the 

differences being more pronounced in the regions where 

the overlap between the atomic wave-functions is large. 

As a natural consequence of the anti-symmetry 

requirement on the wave function, this alteration in the 

electronic charge density causes a charge depletion. This 

does not mean that the electron-charge density is sum of 

charge densities for a system of free ions. 

In order to emphasize the above picture, let us consider 

a number of atoms or ions at i sites L=1, 2 etc. At 

every site L we have positive nucleus of charge  L e 

and number nL of electrons such that ZL(= ЄL -nL) is 

the net ionic charge at L. The number density n( ⃗)of 

electrons in the crystal can be expressed as 

n (  ⃗  =∑      ⃗      ⃗                                                 1.1 

 

Here nL   ⃗ {=  L e    ⃗  —  L } represents the 

electron distribution in a free ion at the position 

land  n ( ⃗) gives the deviations from the distribution; 

which will correspond to a simple superposition of free 

ions. The TBI can be regarded as the electrostatic 

interaction between the charge distributions    ⃗) and a 
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point (or monopole) charge of the lattice. Since the 

overlap deformation density     ⃗)is contributed by the 

multipoles, therefore, TBI may be considered to arise 

from monopole-multipole interaction which has been 

treated by Lindqvist [15] in order to explain the 

Cauchy discrepancy ( C 1 2 - C 4 4 )  and the dipolar 

electronic polarizabilities in ionic crystals. The 

monopole-quadrupole interaction have been treated by 

Herpin [24] in terms of many body forces which also take 

account of the Cauchy violations and introduce a 

quadrupolar polarizability which is not well known 

experimentally or theoretically. 

The above mentioned monopole-multipole interactions 

require only the knowledge of charge density and thus 

one has to search for an exact and realistic expression 

forA«(r). According to Lundqvist [15], this overlap 

density has been written as: 

n  ⃗ = ∑ ∑ ∑                     1.2 

Where     is a function dependent on the distance 

        and identical to the overlap integrals? Its 

value is given by  

    =   -∑                                        1.3 

Where 

    ∫  
                        1.4 

Is the overlap integral. Here,   are the normalized one 

electron wave functions including spin such that 

          the index u. refers to an electron with 

quantum numbers n, 1, m and   associated with an ion at 

a certain lattice point La. The symbol ∫    mplies 

integration over the space coordinates (r) and 

summation over me spin coordinates ( ).  

It may be noted from equation 4.6 that the integral of  n 

(  ⃗ ) over iht unit cell is zero. Now, the interaction 

between this charges distribution of zero net charge with 

the ions in the lattice, regarded as point-charge, is given 

by: 

ΦT (r) =   ∑ ∑ ∑                        1.5 

Where e is the elementary electron charge, 

∑           denotes a summation where L is always 

different from   and   . The symbol v Lu means the 

integral defined as: 

(   ) = ∫  
     

 

    
          1.6 

 

Which has been exactly evaluated by Lowdin 

and Lundqvist and fund to give? 

Φr(r) = 
 ∑ ∑ ∑                wher 1.7 

          ∑ ∑      
 

 
              1.8 

      
  

= ∫  
       

        1.9 

      
  

= ∫  
       

         1.10 

Here interactions are to bre extended over the half- 

spaces consisting and respectively. 

Clearly,    
  

    
   1 and therefore we have  

    ⃗   ⃗         ⃗   ⃗                       1.11 

 

If L and L’denote two nn ions in binary crystals, the 

equation represents TBI due to overlap of electron wave-

functions of the adjacent ions. For the fixed overlap 

integrals and fixed inter ionic distances, the function 

           is the measure of the differences of the 

positive ions. The equation 1.5 has been derived from 

the classical approach as discussed below. 

Classical Theory of Three Body Interaction (TBI) 

 

The existence of TBI can also be understood from 

classical theory of charge transfer mechanism. The 

expressions obtained by such theory have been found to 

be the same as those evaluated by Lowdin and Lundqvist on 

the basis of quantum theory. In Order to understand the 

existence of TBI from the charge transfer 

mechanism, lei us consider three ions designated as 

A, B and C in an ionic crystal as shown in the 

Figure 4.3. These ions have been designated by a pair 

of indices (Ik), ( I ’ k ’ )  and ( I ” k ” )  where l 

the cell index is and k distinguishes the k
th

 atom in 

the l
th

 unit cell. All these ions have the ionic 
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charge ± Ze. Here B is the nearest neighbour (nn) of A 

separated by a distance apart from A. C as any ion a 

distance | ⃗         | apart from A. The electron shells of 

ions A and B overlap during lattice vibrations and give 

rise to the transfer of a charge 

dqk = ±Zefk (r(lk ,l” k")) = ±Zefk (r) 1.12 

 

Whose amount depends on the degree of overlap, i.e., 

inter atomic separation (r ); 1 

3fk(r) is a function which is significant only between 

nearest neighbour nn ions and expressed as 

 

       (
  

 
)        1.13 

 

Where Z=Zk|is the ionic charge parameter. The 

occurrence of above transferred charge lead to a 

modified ionic charge of A (or B): 

           {        }        
  

  
{          }    

1.14 

 

Here is the number of nn ions and since f(r) is a 

small quantity, (I + nf{r)) has been approximated as 

*   
 

 
      +  *   

 

 
      +            1.15 

 

On similar arguments, we express the total charge on 

ion C as 

                 {        }              1.16 

 

where l"'k"') ion is not shown in Figure 4.3, but denotes 

the nn ion of C. 

 

Three-Body Interactions (TBI) 

 

Figure 1.2 When-the two neighbouring ions A and B 

come closer to each other, 

overlapping of the electron charge clouds result in a net 

change in charge on both of them. 

 

In view of the modification of ionic charges clue to 

charge transfer mechanism iustrated above, the 

expression for the coulomb interaction energy (equation 

4.4) between ion-pairs A and C gets modified. This 

modified Coulomb interaction w expressions Becomes 

 

  
 {          }  

 
  [      {  (       )}]        , (          )- 

        
 

       

{          }
 

   

{          }
 
[      {  (       )}]       { (       )} 

        
 

   

{          }
     {           }     { (         )} 

                                                                                                                                                
1.17 

 

II. CONCLUSION 
 

Here, the first term is the well-known two-body 

Coulomb potential. The second term contains two 

parts specifying the contributions whose magnitude 

depends on the coordinates of three atoms and hence 

they are referred to as TBI. The last term represents a 

contribution due to four body interactions and is 

neglected in view of its smallness being a product of 

too small functions. Since the ion pairs are identical 

through the crystal, therefore, the same function 

f{r(l ,l’ ’)} can be used to represent the charge-

imnsier between each ion pairs. The expression for 

the modified Coulomb energy for the whole crystal 

can be written as: 

 

Φ 
     

   ∑ ∑ Φ 
 

      { (       )
  

 
∑ ∑

    

(       )      [  

  

 
 

  

 (       )
]     1.22 

 

Φ 
     Φ     Φ         1.18 

 

Where the first term is the well known Coulomb 

potential. The second term is purely TBI energy 

given by: 

Φ       ∑ ∑ ∑              { (       )
   

 (       )
1.19 
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Since each ion is surrounded by six nearest-

neighbours of opposite type, therefore, the modified 

ionic charge becomes [25]              . On 

simplification this ultimately gives 

 

Φ 
       

    

 
*  

  

 
    +  Φ   (r) +Φ     1.20 

 

The above equation reveals clearly that the Coulomb 

part of the classical energy is modified by a factor 

(  
  

 
    ) due to TBI. The TBl parameter f(r) is 

proportional to the square of the overlap integrals [29] 

between two neighbouring ions and depends on the 

separation r between them. A functional form for f(r), 

suggested by Cochran [38], is 

 

                  (
  

 
)         1.21 

Where f0 is crystal independent parameter and p 

range parameter. The use of this analytical 

expression reduces the number of model parameters.  

The metallic state has historically been an important 

building block for studying properties of solids. The 

first theoretical description of metals was given 

by Paul Drude in 1900 with the Drude model, which 

explained electrical and thermal properties by 

describing a metal as an ideal gas of then-newly 

discovered electrons. He was able to derive the 

empirical Wiedemann-Franz law and get results in 

close agreement with the experiments. This classical 

model was then improved by Arnold 

Sommerfeld who incorporated the Fermi–Dirac 

statistics of electrons and was able to explain the 

anomalous behavior of the specific heat of metals in 

the Wiedemann–Franz law. In 1912, The structure of 

crystalline solids was studied by Max von Laue and 

Paul Knipping, when they observed the X-ray 

diffraction pattern of crystals, and concluded that 

crystals get their structure from periodic lattices of 

atoms In 1928, Swiss physicist Felix Bloch provided 

a wave function solution to the Schrödinger 

equation with a periodic potential, called the Bloch 

wave. Calculating electronic properties of metals by 

solving the many-body wavefunction is often 

computationally hard, and hence, approximation 

methods are needed to obtain meaningful 

predictions.[47] The Thomas–Fermi theory, 

developed in the 1920s, was used to estimate system 

energy and electronic density by treating the local 

electron density as a variational parameter. Later in 

the 1930s, Douglas Hartree, Vladimir Fock and John 

Slater developed the so-called Hartree–Fock wave 

function as an improvement over the Thomas–Fermi 

model. The Hartree–Fock method accounted 

for exchange statistics of single particle electron 

wave functions. In general, it's very difficult to solve 

the Hartree–Fock equation. Only the free electron gas 

case can be solved exactly. Finally in 1964–

65, Walter Kohn, Pierre Hohenberg and Lu Jeu 

Sham proposed the density functional theory which 

gave realistic descriptions for bulk and surface 

properties of metals. The density functional theory 

(DFT) has been widely used since the 1970s for band 

structure calculations of variety of solids. 
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